Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Cell Biol ; 86: 102313, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38262116

RESUMO

The nuclear lamina (NL) is a crucial component of the inner nuclear membrane (INM) and consists of lamin filaments and associated proteins. Lamins are type V intermediate filament proteins essential for maintaining the integrity and mechanical properties of the nucleus. In human cells, 'B-type' lamins (lamin B1 and lamin B2) are ubiquitously expressed, while 'A-type' lamins (lamin A, lamin C, and minor isoforms) are expressed in a tissue- and development-specific manner. Lamins homopolymerize to form filaments that localize primarily near the INM, but A-type lamins also localize to and function in the nucleoplasm. Lamins play central roles in the assembly, structure, positioning, and mechanics of the nucleus, modulating cell signaling and influencing development, differentiation, and other activities. This review highlights recent findings on the structure and regulation of lamin filaments, providing insights into their multifaceted functions, including their role as "mechanosensors", delving into the emerging significance of lamin filaments as vital links between cytoskeletal and nuclear structures, chromatin organization, and the genome.


Assuntos
Lamina Tipo B , Lâmina Nuclear , Humanos , Laminas/metabolismo , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Lâmina Nuclear/metabolismo , Membrana Nuclear/metabolismo , Núcleo Celular/metabolismo , Filamentos Intermediários/metabolismo , Diferenciação Celular
2.
FEBS Lett ; 597(22): 2806-2822, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37953467

RESUMO

Lamina-associated domains are large regions of heterochromatin positioned at the nuclear periphery. These domains have been implicated in gene repression, especially in the context of development. In mammals, LAD organization is dependent on nuclear lamins, inner nuclear membrane proteins, and chromatin state. In addition, chromatin readers and modifier proteins have been implicated in this organization, potentially serving as molecular tethers that interact with both nuclear envelope proteins and chromatin. More recent studies have focused on teasing apart the rules that govern dynamic LAD organization and how LAD organization, in turn, relates to gene regulation and overall 3D genome organization. This review highlights recent studies in mammalian cells uncovering factors that instruct the choreography of LAD organization, re-organization, and dynamics at the nuclear lamina, including LAD dynamics in interphase and through mitotic exit, when LAD organization is re-established, as well as intra-LAD subdomain variations.


Assuntos
Núcleo Celular , Lâmina Nuclear , Animais , Núcleo Celular/metabolismo , Lâmina Nuclear/genética , Lâmina Nuclear/metabolismo , Cromatina/genética , Cromatina/metabolismo , Membrana Nuclear , Heterocromatina/genética , Heterocromatina/metabolismo , Mamíferos/genética
3.
J Cell Biol ; 221(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36301259

RESUMO

In mammalian cell nuclei, the nuclear lamina (NL) underlies the nuclear envelope (NE) to maintain nuclear structure. The nuclear lamins, the major structural components of the NL, are involved in the protection against NE rupture induced by mechanical stress. However, the specific role of the lamins in repair of NE ruptures has not been fully determined. Our analyses using immunofluorescence and live-cell imaging revealed that the nucleoplasmic pool of lamin C rapidly accumulated at sites of NE rupture induced by laser microirradiation in mouse embryonic fibroblasts. The accumulation of lamin C at the rupture sites required both the immunoglobulin-like fold domain that binds to barrier-to-autointegration factor (BAF) and a nuclear localization signal. The accumulation of nuclear BAF and cytoplasmic cyclic GMP-AMP synthase (cGAS) at the rupture sites was in part dependent on lamin A/C. These results suggest that nucleoplasmic lamin C, BAF, and cGAS concertedly accumulate at sites of NE rupture for rapid repair.


Assuntos
Lamina Tipo A , Membrana Nuclear , Animais , Camundongos , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(17): e2121816119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35439057

RESUMO

The ability of a cell to regulate its mechanical properties is central to its function. Emerging evidence suggests that interactions between the cell nucleus and cytoskeleton influence cell mechanics through poorly understood mechanisms. Here we conduct quantitative confocal imaging to show that the loss of A-type lamins tends to increase nuclear and cellular volume while the loss of B-type lamins behaves in the opposite manner. We use fluorescence recovery after photobleaching, atomic force microscopy, optical tweezer microrheology, and traction force microscopy to demonstrate that A-type lamins engage with both F-actin and vimentin intermediate filaments (VIFs) through the linker of nucleoskeleton and cytoskeleton (LINC) complexes to modulate cortical and cytoplasmic stiffness as well as cellular contractility in mouse embryonic fibroblasts (MEFs). In contrast, we show that B-type lamins predominantly interact with VIFs through LINC complexes to regulate cytoplasmic stiffness and contractility. We then propose a physical model mediated by the lamin­LINC complex that explains these distinct mechanical phenotypes (mechanophenotypes). To verify this model, we use dominant negative constructs and RNA interference to disrupt the LINC complexes that facilitate the interaction of the nucleus with the F-actin and VIF cytoskeletons and show that the loss of these elements results in mechanophenotypes like those observed in MEFs that lack A- or B-type lamin isoforms. Finally, we demonstrate that the loss of each lamin isoform softens the cell nucleus and enhances constricted cell migration but in turn increases migration-induced DNA damage. Together, our findings uncover distinctive roles for each of the four major lamin isoforms in maintaining nucleocytoskeletal interactions and cellular mechanics.


Assuntos
Fibroblastos , Lâmina Nuclear , Animais , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Camundongos , Lâmina Nuclear/metabolismo , Matriz Nuclear/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-34400553

RESUMO

Lamins interact with a host of nuclear membrane proteins, transcription factors, chromatin regulators, signaling molecules, splicing factors, and even chromatin itself to form a nuclear subcompartment, the nuclear lamina, that is involved in a variety of cellular processes such as the governance of nuclear integrity, nuclear positioning, mitosis, DNA repair, DNA replication, splicing, signaling, mechanotransduction and -sensation, transcriptional regulation, and genome organization. Lamins are the primary scaffold for this nuclear subcompartment, but interactions with lamin-associated peptides in the inner nuclear membrane are self-reinforcing and mutually required. Lamins also interact, directly and indirectly, with peripheral heterochromatin domains called lamina-associated domains (LADs) and help to regulate dynamic 3D genome organization and expression of developmentally regulated genes.


Assuntos
Mecanotransdução Celular , Lâmina Nuclear , Núcleo Celular/metabolismo , Cromatina/metabolismo , Laminas/genética , Laminas/metabolismo , Membrana Nuclear/metabolismo , Lâmina Nuclear/genética , Lâmina Nuclear/metabolismo
6.
Genome Biol ; 22(1): 305, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34775987

RESUMO

BACKGROUND: The dynamic 3D organization of the genome is central to gene regulation and development. The nuclear lamina influences genome organization through the tethering of lamina-associated domains (LADs) to the nuclear periphery. Evidence suggests that lamins A and C are the predominant lamins involved in the peripheral association of LADs, potentially serving different roles. RESULTS: Here, we examine chromosome architecture in mouse cells in which lamin A or lamin C are downregulated. We find that lamin C, and not lamin A, is required for the 3D organization of LADs and overall chromosome organization. Striking differences in localization are present as cells exit mitosis and persist through early G1 and are linked to differential phosphorylation. Whereas lamin A associates with the nascent nuclear envelope (NE) during telophase, lamin C remains in the interior, surrounding globular LAD aggregates enriched on euchromatic regions. Lamin C association with the NE is delayed until several hours into G1 and correlates temporally and spatially with the post-mitotic NE association of LADs. Post-mitotic LAD association with the NE, and global 3D genome organization, is perturbed only in cells depleted of lamin C, and not lamin A. CONCLUSIONS: Lamin C regulates LAD dynamics during exit from mitosis and is a key regulator of genome organization in mammalian cells. This reveals an unexpectedly central role for lamin C in genome organization, including inter-chromosomal LAD-LAD segregation and LAD scaffolding at the NE, raising intriguing questions about the individual and overlapping roles of lamin A/C in cellular function and disease.


Assuntos
Genoma , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Mitose , Animais , Núcleo Celular/genética , Cromatina , Cromossomos , Humanos , Lamina Tipo B/genética , Laminas , Camundongos , Membrana Nuclear , Lâmina Nuclear/genética
7.
Curr Opin Genet Dev ; 67: 163-173, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33774266

RESUMO

The nucleus is a highly structured organelle with many chromatin and protein compartments that partition the genome into regulatory domains. One such a compartment within the mammalian nucleus is the microenvironment underlying the nuclear envelope (NE) where intermediate filament proteins, lamins, act as a link between cytoskeletal and inner nuclear membrane (INM) proteins, chromatin binders and modifiers, and heterochromatin. These dynamic interactions regulate many cellular processes and, when they are perturbed, can lead to genome dysregulation and disease.


Assuntos
Cromatina/ultraestrutura , Genoma/genética , Heterocromatina/ultraestrutura , Lâmina Nuclear/ultraestrutura , Animais , Núcleo Celular , Cromatina/genética , Citoesqueleto/genética , Citoesqueleto/ultraestrutura , Heterocromatina/genética , Humanos , Laminas/genética , Mitose/genética , Membrana Nuclear/genética , Lâmina Nuclear/genética , Proteínas Nucleares/genética
8.
Life Sci Alliance ; 4(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33758005

RESUMO

The nuclear lamina is a proteinaceous network of filaments that provide both structural and gene regulatory functions by tethering proteins and large domains of DNA, the so-called lamina-associated domains (LADs), to the periphery of the nucleus. LADs are a large fraction of the mammalian genome that are repressed, in part, by their association to the nuclear periphery. The genesis and maintenance of LADs is poorly understood as are the proteins that participate in these functions. In an effort to identify proteins that reside at the nuclear periphery and potentially interact with LADs, we have taken a two-pronged approach. First, we have undertaken an interactome analysis of the inner nuclear membrane bound LAP2ß to further characterize the nuclear lamina proteome. To accomplish this, we have leveraged the BioID system, which previously has been successfully used to characterize the nuclear lamina proteome. Second, we have established a system to identify proteins that bind to LADs by developing a chromatin-directed BioID system. We combined the BioID system with the m6A-tracer system which binds to LADs in live cells to identify both LAD proximal and nuclear lamina proteins. In combining these datasets, we have further characterized the protein network at the nuclear lamina, identified putative LAD proximal proteins and found several proteins that appear to interface with both micro-proteomes. Importantly, several proteins essential for LAD function, including heterochromatin regulating proteins related to H3K9 methylation, were identified in this study.


Assuntos
Lâmina Nuclear/metabolismo , Proteoma/metabolismo , Animais , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Genoma , Heterocromatina/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Camundongos , Células NIH 3T3 , Lâmina Nuclear/genética , Lâmina Nuclear/patologia , Proteínas Nucleares/genética , Ligação Proteica/fisiologia , Domínios Proteicos/fisiologia , Proteoma/genética , Proteômica/métodos
9.
Cell Rep ; 25(7): 1729-1740.e6, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30428344

RESUMO

Tcrb locus V(D)J recombination is regulated by positioning at the nuclear periphery. Here, we used DamID to profile Tcrb locus interactions with the nuclear lamina at high resolution. We identified a lamina-associated domain (LAD) border composed of several CTCF-binding elements that segregates active non-LAD from inactive LAD regions of the locus. Deletion of the LAD border causes an enhancer-dependent spread of histone H3 lysine 27 acetylation from the active recombination center into recombination center-proximal LAD chromatin. This is associated with a disruption to nuclear lamina association, increased chromatin looping to the recombination center, and increased transcription and recombination of recombination center-proximal gene segments. Our results show that a LAD and LAD border are critical components of Tcrb locus gene regulation and suggest that LAD borders may generally function to constrain the activity of nearby enhancers.


Assuntos
Loci Gênicos , Lâmina Nuclear/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Recombinação Genética/genética , Transcrição Gênica , Animais , Linhagem Celular , Cromatina/metabolismo , Histonas/metabolismo , Humanos , Lisina/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Ativação Transcricional/genética , Recombinação V(D)J/genética
10.
J Proteome Res ; 17(2): 759-769, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29249144

RESUMO

Biotin-based labeling strategies are widely employed to study protein-protein interactions, subcellular proteomes and post-translational modifications, as well as, used in drug discovery. While the high affinity of streptavidin for biotin greatly facilitates the capture of biotinylated proteins, it still presents a challenge, as currently employed, for the recovery of biotinylated peptides. Here we describe a strategy designated Biotinylation Site Identification Technology (BioSITe) for the capture of biotinylated peptides for LC-MS/MS analyses. We demonstrate the utility of BioSITe when applied to proximity-dependent labeling methods, APEX and BioID, as well as biotin-based click chemistry strategies for identifying O-GlcNAc-modified sites. We demonstrate the use of isotopically labeled biotin for quantitative BioSITe experiments that simplify differential interactome analysis and obviate the need for metabolic labeling strategies such as SILAC. Our data also highlight the potential value of site-specific biotinylation in providing spatial and topological information about proteins and protein complexes. Overall, we anticipate that BioSITe will replace the conventional methods in studies where detection of biotinylation sites is important.


Assuntos
Acetilglucosamina/metabolismo , Biotina/química , Química Click/métodos , Peptídeos/isolamento & purificação , Processamento de Proteína Pós-Traducional , Estreptavidina/química , Acetilglucosamina/química , Sequência de Aminoácidos , Animais , Anticorpos Imobilizados/química , Linfócitos B/química , Biotinilação , Linhagem Celular , Cromatografia Líquida , Células HEK293 , Humanos , Camundongos , Peptídeos/química , Proteólise , Espectrometria de Massas em Tandem
11.
Cancer Res ; 77(21): e43-e46, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29092937

RESUMO

Proteogenomics has emerged as a valuable approach in cancer research, which integrates genomic and transcriptomic data with mass spectrometry-based proteomics data to directly identify expressed, variant protein sequences that may have functional roles in cancer. This approach is computationally intensive, requiring integration of disparate software tools into sophisticated workflows, challenging its adoption by nonexpert, bench scientists. To address this need, we have developed an extensible, Galaxy-based resource aimed at providing more researchers access to, and training in, proteogenomic informatics. Our resource brings together software from several leading research groups to address two foundational aspects of proteogenomics: (i) generation of customized, annotated protein sequence databases from RNA-Seq data; and (ii) accurate matching of tandem mass spectrometry data to putative variants, followed by filtering to confirm their novelty. Directions for accessing software tools and workflows, along with instructional documentation, can be found at z.umn.edu/canresgithub. Cancer Res; 77(21); e43-46. ©2017 AACR.


Assuntos
Biologia Computacional/métodos , Genômica/métodos , Neoplasias/genética , Software , Genoma Humano , Humanos , Proteômica/métodos , Espectrometria de Massas em Tandem , Transcriptoma/genética
12.
Methods Enzymol ; 569: 433-53, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26778570

RESUMO

The three-dimensional (3D) organization of the genome is important for chromatin regulation. This organization is nonrandom and appears to be tightly correlated with or regulated by chromatin state and scaffolding proteins. To understand how specific DNA and chromatin elements contribute to the functional organization of the genome, we developed a new tool-the tagged chromosomal insertion site (TCIS) system-to identify and study minimal DNA sequences that drive nuclear compartmentalization and applied this system to specifically study the role of cis elements in targeting DNA to the nuclear lamina. The TCIS system allows Cre-recombinase-mediated site-directed integration of any DNA fragment into a locus tagged with lacO arrays, thus enabling both functional molecular studies and positional analysis of the altered locus. This system can be used to study the minimal DNA sequences that target the nuclear periphery (or other nuclear compartments), allowing researchers to understand how genome-wide results obtained, for example, by DNA adenine methyltransferase identification, chromosome conformation capture (HiC), or related methods, connect to the actual organization of DNA and chromosomes at the single-cell level. Finally, TCIS allows one to test roles for specific proteins in chromatin reorganization and to determine how changes in nuclear environment affect chromatin state and gene regulation at a single locus.


Assuntos
Cromatina/fisiologia , Mapeamento Cromossômico , Lâmina Nuclear/fisiologia , Animais , Células Cultivadas , Engenharia Genética , Humanos , Integrases/fisiologia , Camundongos , Mutagênese Insercional , Análise de Sequência de DNA
13.
Dev Cell ; 35(6): 670-1, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26702826

RESUMO

Chromatin domains associated with the nuclear lamina are generally heterochromatic and transcriptionally repressed. How they are recruited to and maintained at the nuclear periphery remains unclear. A recent study by Gonzalez-Sandoval et al. (2015) in Cell identifies a chromatin-binding protein that links repressive chromatin with the inner nuclear membrane.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas Cromossômicas não Histona/metabolismo , Embrião não Mamífero/citologia , Heterocromatina , Código das Histonas , Animais
14.
J Cell Biol ; 208(1): 33-52, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25559185

RESUMO

Nuclear organization has been implicated in regulating gene activity. Recently, large developmentally regulated regions of the genome dynamically associated with the nuclear lamina have been identified. However, little is known about how these lamina-associated domains (LADs) are directed to the nuclear lamina. We use our tagged chromosomal insertion site system to identify small sequences from borders of fibroblast-specific variable LADs that are sufficient to target these ectopic sites to the nuclear periphery. We identify YY1 (Ying-Yang1) binding sites as enriched in relocating sequences. Knockdown of YY1 or lamin A/C, but not lamin A, led to a loss of lamina association. In addition, targeted recruitment of YY1 proteins facilitated ectopic LAD formation dependent on histone H3 lysine 27 trimethylation and histone H3 lysine di- and trimethylation. Our results also reveal that endogenous loci appear to be dependent on lamin A/C, YY1, H3K27me3, and H3K9me2/3 for maintenance of lamina-proximal positioning.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Fibroblastos/metabolismo , Lamina Tipo A/metabolismo , Lâmina Nuclear/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Sítios de Ligação , Cromatina/química , Cromatina/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Histonas/metabolismo , Lamina Tipo A/genética , Lisina , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Células NIH 3T3 , Conformação de Ácido Nucleico , Conformação Proteica , Interferência de RNA , Fatores de Tempo , Transfecção , Fator de Transcrição YY1/metabolismo
15.
Elife ; 3: e02996, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25161194

RESUMO

Despite the well-established role of heterochromatin in protecting chromosomal integrity during meiosis and mitosis, the contribution and extent of heterochromatic histone posttranslational modifications (PTMs) remain poorly defined. Here, we gained novel functional insight about heterochromatic PTMs by analyzing histone H3 purified from the heterochromatic germline micronucleus of the model organism Tetrahymena thermophila. Mass spectrometric sequencing of micronuclear H3 identified H3K23 trimethylation (H3K23me3), a previously uncharacterized PTM. H3K23me3 became particularly enriched during meiotic leptotene and zygotene in germline chromatin of Tetrahymena and C. elegans. Loss of H3K23me3 in Tetrahymena through deletion of the methyltransferase Ezl3p caused mislocalization of meiosis-induced DNA double-strand breaks (DSBs) to heterochromatin, and a decrease in progeny viability. These results show that an evolutionarily conserved developmental pathway regulates H3K23me3 during meiosis, and our studies in Tetrahymena suggest this pathway may function to protect heterochromatin from DSBs.


Assuntos
Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/genética , Tetrahymena thermophila/metabolismo , Sequência de Aminoácidos , Quebras de DNA de Cadeia Dupla , DNA de Protozoário/genética , DNA de Protozoário/metabolismo , Deleção de Genes , Heterocromatina/química , Histona-Lisina N-Metiltransferase/deficiência , Histonas/genética , Meiose/genética , Metilação , Micronúcleo Germinativo/genética , Micronúcleo Germinativo/metabolismo , Dados de Sequência Molecular , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência , Tetrahymena thermophila/genética
16.
Curr Opin Cell Biol ; 28: 105-20, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24886773

RESUMO

In recent years, our view of the nucleus has changed considerably with an increased awareness of the roles dynamic higher order chromatin structure and nuclear organization play in nuclear function. More recently, proteomics approaches have identified differential expression of nuclear lamina and nuclear envelope transmembrane (NET) proteins. Many NETs have been implicated in a range of developmental disorders as well as cell-type specific biological processes, including genome organization and nuclear morphology. While further studies are needed, it is clear that the differential nuclear envelope proteome contributes to cell-type specific nuclear identity and functions. This review discusses the importance of proteome diversity at the nuclear periphery and highlights the putative roles of NET proteins, with a focus on nuclear architecture.


Assuntos
Genoma , Membrana Nuclear/genética , Proteoma/metabolismo , Animais , Cromossomos/química , Cromossomos/genética , Cromossomos/metabolismo , Regulação da Expressão Gênica , Humanos , Membrana Nuclear/química , Membrana Nuclear/metabolismo , Proteoma/genética
17.
Curr Opin Genet Dev ; 25: 50-61, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24556270

RESUMO

The nuclear periphery has been implicated in gene regulation and it has been proposed that proximity to the nuclear lamina and inner nuclear membrane (INM) leads to gene repression. More recently, it appears that there is a correlation and interdependence between lamina associated domains (LADs), the epigenome and overall three-dimensional architecture of the genome. However, the mechanisms of such organization at the 'peripheral zone' and the functional significance of these associations are poorly understood. The role these domains play in development and disease is an active and exciting area of research, expanding our knowledge of how the three-dimensional (3D) genome is regulated.


Assuntos
Genoma , Lâmina Nuclear/genética , Animais , Epigênese Genética , Humanos , Lâmina Nuclear/química , Conformação de Ácido Nucleico
18.
Semin Cancer Biol ; 23(2): 109-15, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23266653

RESUMO

In spite of our increased understanding of how genomes are dysregulated in cancer and a plethora of molecular diagnostic tools, the front line and 'gold standard' detection of cancer remains the pathologist's detection of gross changes in cellular and tissue structure, most strikingly nuclear dis-organization. In fact, for over 140 years it has been noted that nuclear morphology is often disrupted in cancer. Even today, nuclear morphology measures include nuclear size, shape, DNA content (ploidy) and 'chromatin organization'. Given the importance of nuclear shape to diagnoses of cancer phenotypes, it is surprising and frustrating that we currently lack a detailed understanding to explain these changes and how they might arise and relate to molecular events in the cell. It is an implicit hypothesis that perturbation of chromatin and epigenetic signatures may lead to alterations in nuclear structure (or vice versa) and that these perturbations lie at the heart of cancer genesis. In this review, we attempt to synthesize research leading to our current understanding on how chromatin interactions at the nuclear lamina, epigenetic modulation and gene regulation may intersect in cancer and offer a perspective on critical experiments that would help clarify how nuclear architecture may contribute to the cancerous phenotype. We also discuss the historical understanding of nuclear structure in normal cells and as a diagnostic in cancer.


Assuntos
Cromatina/química , Cromatina/genética , Neoplasias/genética , Conformação de Ácido Nucleico , Animais , Núcleo Celular/química , Núcleo Celular/genética , Núcleo Celular/patologia , Núcleo Celular/ultraestrutura , Senescência Celular/genética , Montagem e Desmontagem da Cromatina/genética , Montagem e Desmontagem da Cromatina/fisiologia , Regulação Neoplásica da Expressão Gênica , Humanos , Modelos Biológicos , Neoplasias/patologia
19.
Cell ; 149(7): 1474-87, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22726435

RESUMO

A large fraction of the mammalian genome is organized into inactive chromosomal domains along the nuclear lamina. The mechanism by which these lamina associated domains (LADs) are established remains to be elucidated. Using genomic repositioning assays, we show that LADs, spanning the developmentally regulated IgH and Cyp3a loci contain discrete DNA regions that associate chromatin with the nuclear lamina and repress gene activity in fibroblasts. Lamina interaction is established during mitosis and likely involves the localized recruitment of Lamin B during late anaphase. Fine-scale mapping of LADs reveals numerous lamina-associating sequences (LASs), which are enriched for a GAGA motif. This repeated motif directs lamina association and is bound by the transcriptional repressor cKrox, in a complex with HDAC3 and Lap2ß. Knockdown of cKrox or HDAC3 results in dissociation of LASs/LADs from the nuclear lamina. These results reveal a mechanism that couples nuclear compartmentalization of chromatin domains with the control of gene activity.


Assuntos
Cromatina/genética , Proteínas de Ligação a DNA/metabolismo , Inativação Gênica , Mitose , Lâmina Nuclear/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450/genética , DNA/química , Drosophila/metabolismo , Histona Desacetilases/metabolismo , Cadeias Pesadas de Imunoglobulinas/genética , Camundongos , Células NIH 3T3 , Membrana Nuclear/metabolismo , Transcrição Gênica
20.
Adv Exp Med Biol ; 650: 133-47, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19731807

RESUMO

The hallmark of B-cell development is the ordered recombination of immunoglobulin (Ig) genes. Recently, considerable progress has been achieved in assembling gene regulatory networks comprised of signaling components and transcription factors that regulate B-cell development. In this chapter we synthesize experimental evidence to explain how such signaling pathways and transcription factors can orchestrate the ordered recombination of immunoglobulin (Ig) genes. Recombination of antigen-receptor loci is regulated both by the developmentally controlled expression of the Rag1 and Rag2 genes and the accessibility of particular loci and their gene segments to recombination. A new framework has emerged that invokes nuclear compartmentalization, large-scale chromatin dynamics and localized changes in chromatin structure in regulating the accessibility of Ig loci at specific stages of B-cell development. We review this emergent framework and discuss new experimental approaches that will be needed to explore the underlying molecular mechanisms.


Assuntos
Linfócitos B/fisiologia , Rearranjo Gênico do Linfócito B , Genes de Imunoglobulinas , Recombinação Genética , Alelos , Animais , Linfócitos B/imunologia , Cadeias Leves de Imunoglobulina/genética , Região Variável de Imunoglobulina/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...